Four-dimensional micro-building blocks

2020-01-18T00:36:29+00:00January 17th, 2020|Categories: Publications|

Four-dimensional (4D) printing relies on multimaterial printing, reinforcement patterns, or micro/nanofibrous additives as programmable tools to achieve desired shape reconfigurations. However, existing programming approaches still follow the so-called origami design principle to generate reconfigurable structures by self-folding stacked 2D materials, particularly at small scales. Here, we propose a programmable modular

Published in: "Science Advances".

Direct Measurement of the Electronic Structure and band gap nature of atomic-layer-thick 2H-MoTe2. (arXiv:2001.05894v1 [cond-mat.mtrl-sci])

2020-01-17T02:29:27+00:00January 17th, 2020|Categories: Publications|Tags: |

The millimeter sized monolayer and bilayer 2H-MoTe2 single crystal samples are prepared by a new mechanical exfoliation method. Based on such high-quality samples, we report the first direct electronic structure study on them, using standard high resolution angle-resolved photoemission spectroscopy (ARPES). A direct band gap of 0.924eV is found at K in the rubidium-doped monolayer MoTe2. Similar valence band alignment is also observed in bilayer MoTe2,supporting an assumption of a analogous direct gap semiconductor on it. Our measurements indicate a rather large band splitting of 212meV at the valence band maximum (VBM) in monolayer MoTe2, and the splitting is systematically enlarged with layer stacking, from monolayer to bilayer and to bulk. Meanwhile, our PBE band calculation on these materials show excellent agreement with ARPES results. Some fundamental electronic parameters are derived from the experimental and calculated electronic structures. Our findings lay a foundation for further application-related study on monolayer and bilayer MoTe2.

Published in: "arXiv Material Science".

Tunable Topological Energy Bands in 2D Dialkali-Metal Monoxides. (arXiv:1912.08019v2 [cond-mat.mes-hall] UPDATED)

2020-01-17T02:29:21+00:00January 17th, 2020|Categories: Publications|Tags: |

2D materials with nontrivial energy bands are highly desirable for exploring various topological phases of matter, as low dimensionality opens unprecedented opportunities for manipulating the quantum states. Here, it is reported that monolayer (ML) dialkali-metal monoxides, in the well-known 2H-MoS$_2$ type lattice, host multiple symmetry-protected topological phases with emergent fermions, which can be effectively tuned by strain engineering. Based on first-principles calculations, it is found that in the equilibrium state, ML Na$_2$O is a 2D double Weyl semimetal, while ML K$_2$O is a 2D pseudospin-1 metal. These exotic topological states exhibit a range of fascinating effects, including universal optical absorbance, super Klein tunneling, and super collimation effect. By introducing biaxial or uniaxial strain, a series of quantum phase transitions between 2D double Weyl semimetal, 2D Dirac semimetal, 2D pseudospin-1 metal, and semiconductor phases can be realized. The results suggest monolayer dialkali-metal monoxides as a promising platform to explore fascinating physical phenomena associated with novel 2D emergent fermions.

Published in: "arXiv Material Science".

Raman Response and Transport Properties of One-Dimensional van der Waals Tellurium Nanowires. (arXiv:2001.05539v1 [cond-mat.mes-hall])

2020-01-17T02:29:18+00:00January 17th, 2020|Categories: Publications|Tags: |

Tellurium can form nanowires of helical atomic chains. Given their unique one-dimensional van der Waals structure, these nanowires are expected to show remarkably different physical and electronic properties than bulk tellurium. Here we show that few-chain and single-chain van der Waals tellurium nanowires can be isolated using carbon nanotube and boron nitride nanotube encapsulation. With the approach, the number of atomic chains can be controlled by the inner diameter of the nanotube. The Raman response of the structures suggests that the interaction between a single-atomic tellurium chain and a carbon nanotube is weak, and that the inter-chain interaction becomes stronger as the number of chains increases. Compared with bare tellurium nanowires on SiO2, nanowires encapsulated in boron nitride nanotubes exhibit a dramatically enhanced current-carrying capacity, with a current density of 1.5*10^8 A cm-2, which exceeds that of most semiconducting nanowires. We also use our tellurium nanowires encapsulated in boron nitride nanotubes to create field-effect transisto