Publication on 2D research

An MBene Modulating the Buried SnO2/Perovskite Interface in Perovskite Solar Cells

2024-04-19T13:08:16+00:00April 19th, 2024|Categories: Publications|

The interface of perovskite solar cells (PSCs) plays an important role in transferring and collecting charges. Interface defects are important factors affecting the efficiency and stability of PSCs. Here, the buried interface between SnO2 and the perovskite layer is bridged by two-dimensional (2D) MBene, which improves charge transfer. MBene can deposit additional electrons on the surface of SnO2, passivate its surface defects and facilitate the charge collection. Moreover, the dipole moment formed at the interface increases the electron transfer ability in the PSCs. MBene also regulates the growth of perovskite crystals, improves the quality of perovskite films, and reduces its grain boundary defects. As a result, PSCs based on FA0.2MA0.8PbI3 and (FAPbI3)0.95(MAPbBr3)0.05 get the enhanced efficiencies of 22.34% and 24.32% with negligible hysteresis. Furthermore, the optimized device exhibits better stability. This work opens up the application of MBene materials in PSCs, reveals a deeper understanding of the mechanism behind using 2D materials as an interface modification layer, and shows opportunities for using MBene as potential material in photoelectric devices.

Published in: "Angewandte Chemie International Edition".

Considerable Piezochromism in All‐Inorganic Zero‐Dimensional Perovskite Nanocrystals via Pressure‐Modulated Self‐Trapped Exciton Emission

2024-04-19T13:08:13+00:00April 19th, 2024|Categories: Publications|Tags: |

Piezochromic materials refer to a class of matters that alter their photoluminescence (PL) colors in response to the external stimuli, which exhibit promising smart applications in anti-counterfeiting, optoelectronic memory and pressure-sensing. However, so far, most reported piezochromic materials have been confined to organic materials or hybrid materials containing organic moieties with limited piezochromic range of less than 100 nm in visible region. Here, we achieved an intriguing piezochromism in all-inorganic zero-dimensional (0D) Cs3Cu2Cl5 nanocrystals (NCs) with a considerable piezochromic range of 232 nm because of their unique inorganic rigid structure. The PL energy shifted from the lowest-energy red fluorescence (1.85 eV) to the highest-energy blue fluorescence (2.83 eV), covering almost the entire visible wavelength range. Pressure-modulated self-trapped exciton emission between different energy levels of self-trapped states within Cs3Cu2Cl5 NCs was the main reason for this piezochromism property. Note that the quenched emission, which is over five times more intense than that in the initial state, is retained under ambient conditions upon decompression. This work provides a promising pressure indicating material, particularly used in pressure stability monitoring for equipment working at extreme environments.

Published in: "Angewandte Chemie International Edition".

M‐N3 Configuration on Boron Nitride Boosts Singlet Oxygen Generation via Peroxymonosulfate Activation for Selective Oxidation

2024-04-19T13:08:10+00:00April 19th, 2024|Categories: Publications|Tags: , |

Singlet oxygen (1O2) is an essential reactive species responsible for selective oxidation of organic matter, especially in Fenton-like processes. However, due to the great limitations in synthesizing catalysts with well-defined active sites, the controllable production and practical application of 1O2 remain challenging. Herein, guided by theoretical simulations, a series of boron nitride-based single-atom catalysts (BvBN/M, M = Co, Fe, Cu, Ni and Mn) were synthesized to regulate 1O2 generation by activating peroxymonosulfate (PMS). All the fabricated BvBN/M catalysts with explicit M-N3 sites promoted the self-decomposition of the two PMS molecules to generate 1O2 with high selectivity, where BvBN/Co possessed moderate adsorption energy and d-band center exhibited superior catalytic activity. As an outcome, the BvBN/Co-PMS system coupled with membrane filtration technology could continuously transform aromatic alcohols to aldehydes with nearly 100% selectivity and conversion rate under mild conditions, suggesting the potential of this novel catalytic system for green organic synthesis.

Published in: "Angewandte Chemie International Edition".

Isothermal Phase Transitions in Liquid Crystals Driven by Dynamic Covalent Chemistry

2024-04-19T13:08:07+00:00April 19th, 2024|Categories: Publications|

The dynamic nature of calamitic liquid crystals is exploited to perform isothermal phase transitions driven by dynamic covalent chemistry. For this purpose, nematic (N) arrays based on aldehyde 1 were treated with different amines (A-E) in an on-surface process, which resulted in different isothermal phase transitions. These phase transformations were caused by in-situ imination reactions and are dependent on the nature of the added amine. Transitions from the N to crystal (1A, 1E), isotropic (1B), and smectic (Sm) (1C, 1D) phases were achieved, while the resulting materials feature thermotropic liquid crystal behavior. A sequential transformation from the N 1 to the Sm 1C and then to the N 1B was achieved by coupling an imination to a transimination processes and adjusting the temperature. All of these processes were well characterized by microscopic, spectroscopic, and X-ray techniques, unlocking not only the constitutional but also the structural aspects of the phase transitions. This work provides new insights into designing constitutionally and structurally adaptable liquid crystal systems, paving the way toward the conception of programable evolutive pathways and adaptive materials.

Published in: "Angewandte Chemie International Edition".

Radical Homopolymerization of Linear α‐Olefins Enabled by 1,4‐Cyano Group Migration

2024-04-19T13:08:04+00:00April 19th, 2024|Categories: Publications|

α-Olefins are valued and abundant building blocks from fossil resources. They are widely used to provide small-molecule or polymeric products. Despite numerous advantages of radical polymerization, it has been well-documented as textbook knowledge that α-olefins and their functionalized derivatives cannot be radically homopolymerized because of the degradative chain transfer side reactions. Herein, we report our studies on the homopolymerization of thiocyanate functionalized α-olefins enabled by 1,4-cyano group migration under radical conditions. By this approach, a library of ABC sequence-controlled polymers with high molecular weights can be prepared. We can also extend this strategy to the homopolymerization of α-substituted styrenic and acylate monomers which are known to be challenging to achieve. Overall, the demonstrated functional group migration radical polymerization could provide new possibilities to synthesize polymers with unprecedented main chain sequences and structures. These polymers are promising candidates for novel polymeric materials.

Published in: "Angewandte Chemie International Edition".

Photogeneration of Chlorine Radical from a Self‐Assembled Fluorous 4CzIPN•Chloride Complex: Application in C–H bond Functionalization

2024-04-19T13:08:01+00:00April 19th, 2024|Categories: Publications|

The chlorine radical is a strong HAT (Hydrogen Atom Transfer) agent that is very useful for the functionalization of C(sp3)–H bonds. Albeit highly attractive, its generation from the poorly oxidizable chloride ion mediated by an excited photoredox catalyst is a difficult task. We now report that 8Rf8-4CzIPN, an electron-deficient fluorous derivative of the benchmark 4CzIPN photoredox catalyst belonging to the donor-acceptor carbazole-cyanoarene family, is not only a better photooxidant than 4CzIPN, but also becomes an excellent host for the chloride ion. Combining these two properties ultimately makes the self-assembled 8Rf8-4CzIPN•Cl– dual catalyst highly reactive in redox-neutral Giese-type C(sp3)-H bond alkylation reactions promoted by the chlorine radical. Additionally, because of its fluorous character, the efficient separation/recovery of 8Rf8-4CzIPN could be envisioned.

Published in: "Angewandte Chemie International Edition".

Non‐Fluorinated Ethers to Mitigate Electrode Surface Reactivity in High‐Voltage NCM811‐Li Batteries

2024-04-17T13:08:45+00:00April 17th, 2024|Categories: Publications|Tags: |

Lithium (Li) metal batteries (LMBs) with nickel (Ni)-rich layered oxide cathodes exhibit twice the energy density of conventional Li-ion batteries. However, their lifespan is limited by severe side reactions caused by high electrode reactivity. Fluorinated solvent-based electrolytes can address this challenge, but they pose environmental and biological hazards. This work reports on the molecular engineering of fluorine (F)-free ethers to mitigate electrode surface reactivity in high-voltage Ni-rich LMBs. By merely extending the alkyl chains of traditional ethers, we effectively reduce the catalytic reactivity of the cathode towards the electrolyte at high voltages, which suppresses the oxidation decomposition of the electrolyte, microstructural defects and rock-salt phase formation in the cathode, and gas release issues. The high-voltage Ni-rich NCM811-Li battery delivers capacity retention of 80% after 250 cycles with a high Coulombic efficiency of 99.85%, even superior to that in carbonate electrolytes. Additionally, this strategy facilitates passivation of the Li anode by forming a robust solid-electrolyte interphase, boosting the Li reversibility to 99.11% with a cycling life of 350 cycles, which outperforms conventional F-free ether electrolytes. Consequently, the lifespan of practical LMBs has been prolonged by over 100% and 500% compared to those in conventional carbonate- and ether-based electrolytes, respectively.

Published in: "Angewandte Chemie International Edition".

Unveiling Crucial Chemical Processing Parameters Influencing the Performance of Solution‐processed Inorganic Thermoelectric Materials

2024-04-17T13:08:43+00:00April 17th, 2024|Categories: Publications|

Production of thermoelectric materials from solution-processed particles involves the synthesis of particles, their purification and densification into pelletized material. Chemical changes that occur during each one of these steps render them performance determining. Particularly the purification steps, bypassed in conventional solid-state synthesis, are the cause for large discrepancies among similar solution-processed materials. In present work, the investigation focuses on a water-based surfactant free solution synthesis of SnSe, a highly relevant thermoelectric material. We show and rationalize that the number of leaching steps, purification solvent, annealing, and annealing atmosphere have significant influence on the Sn:Se ratio and impurity content in the powder. Such compositional changes that are undetectable by conventional characterization techniques lead to distinct consolidated materials with different types and concentration of defects. Additionally, the profound effect on their transport properties is demonstrated. We emphasize that understanding the chemistry and identifying key chemical species and their role throughout the process is paramount for optimizing material performance. Furthermore, we aim to demonstrate the necessity of comprehensive reporting of these steps as a standard practice to ensure material reproducibility.

Published in: "Angewandte Chemie International Edition".

One‐pot Synthesis of High‐capacity Sulfur Cathodes via In‐situ Polymerization of a Porous Imine‐based Polymer

2024-04-16T13:08:11+00:00April 16th, 2024|Categories: Publications|Tags: |

Lithium-ion batteries, essential for electronics and electric vehicles, predominantly use cathodes made from critical materials like cobalt. Sulfur-based cathodes, offering a high theoretical capacity of 1675 mAh g–1 and environmental advantages due to sulfur’s abundance and lower toxicity, present a more sustainable alternative. However, state-of-the-art sulfur-based electrodes do not reach the theoretical capacities, mainly because conventional electrode production relies on mixing of components into weakly coordinated slurries. Consequently, sulfur’s mobility leads to battery degradation – an effect known as the “sulfur-shuttle”. This study introduces a solution by developing a microporous, covalently-bonded, imine-based polymer network grown in-situ around sulfur particles on the current collector. The polymer network (i) enables selective transport of electrolyte and Li-ions through pores of defined size, and (ii) acts as a robust host to retain the active component of the electrode (sulfur species). The resulting cathode has superior rate performance from 0.1 C (1360 mAh g–1) to 3 C (807 mAh g–1). Demonstrating a high-performance, sustainable sulfur cathode produced via a simple one-pot process, our research underlines the potential of microporous polymers in addressing sulfur diffusion issues, paving the way for sulfur electrodes as viable alternatives to traditional metal-based cathodes.

Published in: "Angewandte Chemie International Edition".

Breaking Highly Ordered PtPbBi Intermetallic with Disordered Amorphous Phase for Boosting Electrocatalytic Hydrogen Evolution and Alcohol Oxidation

2024-04-16T13:08:08+00:00April 16th, 2024|Categories: Publications|

Constructing amorphous/intermetallic (A/IMC) heterophase structures by breaking the highly ordered IMC phase with disordered amorphous phase is an effective way to improve the electrocatalytic performance of noble metal-based IMC electrocatalysts because of the optimized electronic structure and abundant heterophase boundaries as active sites. In this study, we report the synthesis of ultrathin A/IMC PtPbBi nanosheets (NSs) for boosting hydrogen evolution reaction (HER) and alcohol oxidation reactions. The resulting A/IMC PtPbBi NSs exhibit a remarkably low overpotential of only 25 mV at 10 mA cm-2 for the HER in an acidic electrolyte, together with outstanding stability for 100 h. In addition, the PtPbBi NSs show high mass activities for methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR), which are 13.2 and 14.5 times higher than those of commercial Pt/C, respectively. Density functional theory calculations demonstrate that the synergistic effect of amorphous/intermetallic components and multimetallic composition facilitate the electron transfer from the catalyst to key intermediates, thus improving the catalytic activity of MOR. This work establishes a novel pathway for the synthesis of heterophase two-dimensional nanomaterials with high electrocatalytic performance across a wide range of electrochemical applications.

Published in: "Angewandte Chemie International Edition".

Tuning Electron Delocalization of Redox‐Active Porous Aromatic Framework for Low‐Temperature Aqueous Zn–K Hybrid Batteries with Air Self‐Chargeability

2024-04-16T13:08:05+00:00April 16th, 2024|Categories: Publications|Tags: |

Air self-charging aqueous batteries promise to integrate energy harvesting technology and battery systems, potentially overcoming a heavy reliance on energy and the spatiotemporal environment. However, the exploitation of multifunctional air self-charging battery systems using promising cathode materials and suitable charge carriers remains challenging. Herein, for the first time, we developed low-temperature self-charging aqueous Zn-K hybrid ion batteries (AZKHBs) using a fully conjugated hexaazanonaphthalene (HATN)-based porous aromatic framework as the cathode material, exhibiting redox chemistry using K+ as charge carriers, and regulating Zn-ion solvation chemistry to guide uniform Zn plating/stripping. The unique AZKHBs exhibit the exceptional electrochemical properties in all-climate. Most importantly, the large potential difference causes the AZKHBs discharged cathode to be oxidized using oxygen, thereby initiating a self-charging process in the absence of an external power source. Impressively, the air self-charging AZKHBs can achieve a maximum voltage of 1.15 V, an impressive discharge capacity (466.3 mA h g-1), and exceptional self-charging performance even at –40 °C. Therefore, the development of self-charging AZKHBs offers a solution to the limitations imposed by the absence of a power grid in harsh environments or remote areas.

Published in: "Angewandte Chemie International Edition".

Multidimensional electrochemistry decodes the operando mechanism of hydrogen oxidation

2024-04-14T13:08:04+00:00April 14th, 2024|Categories: Publications|Tags: |

Being an efficient approach to the utilization of hydrogen energy, the hydrogen oxidation reaction (HOR) is of particular significance in the current carbon-neutrality time. Yet the mechanistic picture of the HOR is still blurred, mostly because the elemental steps of this reaction are rapid and highly entangled, especially when deviating from the thermodynamic equilibrium state. Here we report a strategy for decoding the HOR mechanism under operando conditions. In addition to the wide-potential-range I-V curves obtained using gas diffusion electrodes, we have applied the AC impedance spectroscopy to provide independent and complementary kinetic information. Combining multidimensional data sources has enabled us to fit, in mathematical rigor, the core kinetic parameter set in a 5-D data space. The reaction rate of the three elemental steps (Tafel, Heyrovsky, and Volmer reactions), as a function of the overpotential, can thus be distilled individually. Such an undocumented kinetic picture unravels, in detail, how the HOR is controlled by the elemental steps on polarization. Our findings not only offer a better understanding of the HOR mechanism, but also lay the foundation for the development of improved hydrogen energy utilization systems.

Published in: "Angewandte Chemie International Edition".

On the Mechanisms of Hypohalous Acid Formation and Electrophilic Halogenation by Non‐Native Halogenases

2024-04-13T13:07:51+00:00April 13th, 2024|Categories: Publications|

Enzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. Here, we used a mechanism-guided strategy to discover the electrophilic halogenation activity catalyzed by non-native halogenases. As the ability to form a hypohalous acid (HOX) is key for halogenation, flavin-dependent monooxygenases/oxidases capable of forming C4a-hydroperoxyflavin (FlC4a-OOH) such as dehalogenase, hydroxylases, luciferase and pyranose-2-oxidase (P2O), and flavin reductase capable of forming H2O2 were explored for their abilities to generate HOX in situ. Transient kinetic analyses using stopped-flow spectrophotometry/ fluorometry and product analysis indicate that FlC4a-OOH in dehalogenases, selected hydroxylases and luciferases, but not in P2O can form HOX; however, the HOX generated from FlC4a-OOH cannot halogenate their substrates. Remarkably, in situ H2O2 generated by P2O can form HOI and also iodinate various compounds. Because not all enzymes capable of forming FlC4a-OOH canreact with halides to form HOX, QM/MM calculations, site-directed mutagenesis and structural analysis were carried out to elucidate the mechanism underlying the HOX formation and characterize the active site environment. Our findings shed light on identifying new halogenase scaffolds besides the currently known enzymes and have invoked a new mode of chemoenzymatic halogenations

Published in: "Angewandte Chemie International Edition".

Self‐Inclusion Complexation of Electron‐Accepting Guest into Electron‐Donating Cyclic Host by Photoexcitation

2024-04-13T13:07:49+00:00April 13th, 2024|Categories: Publications|

Self-inclusion complexes consisting of host–guest conjugates are one of the unique supramolecular structures because they form in-state and out-state depending on the external stimuli. Despite many reports of the stimuli-responsive self-inclusion complex formation, study of the structural relaxation from out-state to in-state by photoexcitation has been unexplored. Herein, we report that an electron-donating host and an electron-accepting guest conjugate exhibits the structural relaxation from out-state to in-state by photoexcitation. Formation of the in-state in the excited state resulted in exciplex emission along with the locally excited emission from the out-state. Moreover, this structural relaxation by photoexcitation was suppressed not only by temperature, but also by the presence of guest molecules, resulting in changes in the ratio of the dual emission intensities.

Published in: "Angewandte Chemie International Edition".

Nonlinear Photochromic Reaction Based on Sensitizer‐Free Triplet‐Triplet Annihilation in a Perylene‐Substituted Rhodamine Spirolactam

2024-04-11T13:07:55+00:00April 11th, 2024|Categories: Publications|Tags: |

Nonlinear photochromic reactions that work with weak incoherent light are important for molecular operation with high spatial resolution, and multiple photofunctions based on single molecules. However, nonlinear photochromic compounds generally require complex molecular design, restricting accessibility in various fields. Herein, we report nonlinear photochromic properties in a perylene-substituted rhodamine spirolactam derivative (Rh-Pe), which is synthesized from rhodamine B in facile procedures. Direct excitation of Rh-Pe produces the triplet excited state via the charge-transfer (CT) state. The triplet excited state causes triplet-triplet annihilation to bring the generation of the intensely-colored ring-open form with the nonlinear behavior. Furthermore, green- and red-light-induced photochromism was achieved in Rh-Pe using triplet sensitizers, although Rh-Pe can be directly excited only by ultraviolet and blue light. Our findings are expected to contribute to the development of photofunctional materials showing nonlinear behavior and low-energy light responsivity.

Published in: "Angewandte Chemie International Edition".

Enantioselective Nickel‐Catalyzed Denitrogenative Transannulation En Route to N‐N Atropisomers

2024-04-09T13:09:28+00:00April 9th, 2024|Categories: Publications|

Nickel-catalyzed transannulation reactions triggered by the extrusion of small gaseous molecules have emerged as a powerful strategy for the efficient construction of heterocyclic compounds. However, it’s asymmetric synthesis remains challenging because of the difficulty in controlling stereo- and regioselectivity. Herein, we report the first nickel-catalyzed asymmetric synthesis of N–N atropisomers by the denitrogenative transannulation of benzotriazones with internal alkynes. A broad range of N–N atropisomers was obtained with excellent regio- and enantioselectivity under mild conditions. Moreover, density functional theory (DFT) calculations provided insights into the nickel-catalyzed reaction mechanism and enantioselectivity control.

Published in: "Angewandte Chemie International Edition".

Steering sp‐Carbon Content in Graphdiynes for Enhanced Two‐Electron Oxygen Reduction to Hydrogen Peroxide

2024-04-09T13:09:26+00:00April 9th, 2024|Categories: Publications|Tags: |

Compared to sp2-hybridized graphene, graphdiynes (GDYs) composed of sp and sp2 carbon are highly promising as efficient catalysts for electrocatalytic oxygen reduction into oxygen peroxide because of the high catalytic reactivity of the electron-rich sp-carbon atoms. The desired catalytic capacity of GDY, such as catalytic selectivity and efficiency, can theoretically be achieved by strategically steering the sp-carbon contents or the topological arrangement of the acetylenic linkages and aromatic bonds. Herein, we successfully tuned the electrocatalytic activity of GDYs by regulating the sp-to-sp2 carbon ratios with different organic monomer precursors. As the active sp-carbon atoms possess electron-sufficient π orbitals, they can donate electrons to the lowest unoccupied molecular orbital (LUMO) orbitals of O2 molecules and initiate subsequent O2 reduction, GDY with the high sp-carbon content of 50 at% exhibits excellent capability of catalyzing O2 reduction into H2O2. It demonstrates exceptional H2O2 selectivity of over 95.0% and impressive performance in practical H2O2 production, Faraday efficiency (FE) exceeding 99.0%, and a yield of 83.3 nmol s–1 cm–2. Our work holds significant importance in effectively steering the inherent properties of GDYs by purposefully adjusting the sp-to-sp2 carbon ratio and highlights their immense potential for research and applications in catalysis and other fields.

Published in: "Angewandte Chemie International Edition".

Oversaturating Liquid Interfaces with Nanoparticle‐Surfactants

2024-04-09T13:09:25+00:00April 9th, 2024|Categories: Publications|

Assemblies of nanoparticles at liquid interfaces hold promise as dynamic “active” systems when there are convenient methods to drive the system out of equilibrium via crowding. To this end, we show that oversaturated assemblies of charged nanoparticles can be realized and held in that state with an external electric field. Upon removal of the field, strong interparticle repulsive forces cause a high in-plane electrostatic pressure that is released in an explosive emulsification. We quantify the packing of the assembly as it is driven into the oversaturated state under an applied electric field. Physiochemical conditions substantially affect the intensity of the induced explosive emulsification, underscoring the crucial role of interparticle electrostatic repulsion.

Published in: "Angewandte Chemie International Edition".

Self‐sorting of Interfacial Compatibility in MOF‐based Mixed Matrix Membranes

2024-04-09T13:09:23+00:00April 9th, 2024|Categories: Publications|

Metal-organic framework (MOF)-based mixed matrix membranes (MMMs) have shown great promises to overcome the performance upper limit of polymeric membranes for various gas separation processes. However, the gas separation properties of the MMMs largely depend on the MOF-polymer interfacial compatibility which is a metric difficult to quantify. In most cases, whether a MOF filler and a polymer matrix make a good pair is not revealed until the gas transport experiments are performed. This is because there is a lack of characterization techniques to directly probe the MOF-polymer interfacial compatibility. In this work, we demonstrate a self-sorting method to rank the interface compatibility among several MOF-polymer pairs. By mixing one MOF with two polymers in an MMM, the demixing of two polymers will form two polymer domains. The MOF particles will preferably partition into the “preferred” polymer domain due to their higher interfacial affinity. By scanning different polymer pairs, a rank of MOF-polymer interfacial compatibility from high to low can be obtained. Moreover, based on this ranking, it was also found that a highly compatible MOF-polymer pair suggested by this method also corresponds to a more predictable MMM gas separation performance.

Published in: "Angewandte Chemie International Edition".

Modular Design of Highly Semiconducting Porous Coordination Polymer for Efficient Electrosynthesis of Ammonia

2024-04-08T13:08:16+00:00April 8th, 2024|Categories: Publications|

Developing highly stable porous coordination polymers (PCPs) with integrated electrical conductivity is crucial for advancing our understanding of electrocatalytic mechanisms and the structure-activity relationship of electrocatalysts. However, achieving this goal remains a formidable challenge because of the electrochemical instability observed in most PCPs. Herein, we develop a “modular design” strategy to construct electrochemically stable semiconducting PCP, namely, Fe-pyNDI, which incorporates a chain-type Fe-pyrazole metal cluster and π-stacking column with effective synergistic effects. The three-dimensional electron diffraction (3D ED) technique resolves the precise structure. Both theoretical and experimental investigation confirms that the π-stacking column in Fe-pyNDI can provide an efficient electron transport path and enhance the structural stability of the material. As a result, Fe-pyNDI can serve as an efficient model electrocatalyst for nitrate reduction reaction (NO3RR) to ammonia with a superior ammonia yield of 339.2 μmol h-1 cm-2 (14677 μg h−1 mgcat.−1) and a faradaic efficiency of 87 % at neutral electrolyte, which is comparable to state-of-the-art electrocatalysts. The in-situ X-ray absorption spectroscopy (XAS) reveals that during the reaction, the structure of Fe-pyNDI can be kept, while part of the Fe3+ in Fe-pyNDI was reduced in situ to Fe2+, which serves as the potential active species for NO3RR.

Published in: "Angewandte Chemie International Edition".

Some say, that 2D Research is the best website in the world.