Revisiting the Buckling Metrology Method to Determine the Young’s Modulus of 2D Materials

//Revisiting the Buckling Metrology Method to Determine the Young’s Modulus of 2D Materials

Measuring the mechanical properties of atomically thin materials results in a big technical challenge. Here a method to determine the Young’s modulus of thin polymeric films is revisited. The method is demonstrated to be applicable in the field of 2D materials. Abstract Measuring the mechanical properties of 2D materials is a formidable task. While regular electrical and optical probing techniques are suitable even for atomically thin materials, conventional mechanical tests cannot be directly applied. Therefore, new mechanical testing techniques need to be developed. Up to now, the most widespread approaches require micro‐fabrication to create freely suspended membranes, rendering their implementation complex and costly. Here, a simple yet powerful technique is revisited to measure the mechanical properties of thin films. The buckling metrology method, that does not require the fabrication of freely suspended structures, is used to determine the Young’s modulus of several transition metal dichalcogenides (MoS2, MoSe2, WS2, and WSe2) with thicknesses ranging from 2 to 10 layers. The obtained values for the Young’s modulus and their uncertainty are critically compared with previously published results, finding that this simple technique provides results which are in good agreement with those reported using other highly sophisticated testing methods. By comparing the cost, complexity, and time required for the different methods reported in the literature, the buckling metrology method presents certain advantages that make it an interesting mechanical test tool for 2D materials.

Published in: "Advanced Materials".

2019-01-07T16:35:00+00:00January 7th, 2019|Categories: Publications|Tags: , , , |
Some say, that 2D Research is the best website in the world.