Graphene

/Tag: Graphene

Promoted Glycerol Oxidation Reaction in an Interface‐Confined Hierarchically Structured Catalyst

2018-11-18T00:34:15+00:00November 17th, 2018|Categories: Publications|Tags: , |

The confinement of Pt nanosheets is realized in a vertically erected graphene array with hierarchically porous architecture to address the mass‐diffusion limitation in interface‐confined catalysis. Such a confined 3D catalyst exhibits a much stronger oxidation and CC bond cleaving ability for the glycerol oxidation reaction, leading to a superior mass activity and selectivity toward C1 products than commercial Pt/C catalysts. Abstract Confined catalysis in a 2D system is of particular interest owing to the facet control of the catalysts and the anisotropic kinetics of reactants, which suppress side reactions and improve selectivity. Here, a 2D‐confined system consisting of intercalated Pt nanosheets within few‐layered graphene is demonstrated. The strong metal–substrate interaction between the Pt nanosheets and the graphene leads to the quasi‐2D growth of Pt with a unique (100)/(111)/(100) faceted structure, thus providing excellent catalytic activity and selectivity toward one‐carbon (C1) products for the glycerol oxidation reaction. A hierarchically porous graphene architecture, grown on carbon cloth, is used to fabricate the confined catalyst bed in order to enhance the mass‐diffusion limitation in interface‐confined reactions. Owing to its unique 3D porous structure, this graphene‐confined Pt catalyst exhibits an extraordinary mass activity of 2910 mA mgPt−1 together with a formate selectivity of 79% at 60 °C. This paves the way toward rational designs of heterogeneous catalysts for energy‐related applications.

Published in: "Advanced Materials".

Electronic and Optical Properties of 2D Materials Constructed from Light Atoms

2018-11-18T00:34:12+00:00November 17th, 2018|Categories: Publications|Tags: |

2D materials constructed from boron, carbon, nitrogen, and oxygen atoms show a rich structural diversity. This makes possible engineering of their electronic and optical properties through a refined structural control. Abstract Boron, carbon, nitrogen, and oxygen atoms can form various building blocks for further construction of structurally well‐defined 2D materials (2DMs). Both in theory and experiment, it has been documented that the electronic structures and optical properties of 2DMs are well tunable through a rational design of the material structure. Here, the recent progress on 2DMs that are composed of B, C, N, and O elements is introduced, including borophene, graphene, h‐BN, g‐C3N4, organic 2D polymers (2DPs), etc. Attention is put on the band structure/bandgap engineering for these materials through a variety of methodologies, such as chemical modifications, layer number and atomic structure control, change of conjugation degree, etc. The optical properties, such as photoluminescence, thermoluminescence, single photon emission, as well as the associated applications in bioimaging and sensing, are discussed in detail and highlighted.

Published in: "Advanced Materials".

An Ambipolar Superconducting Field‐Effect Transistor Operating above Liquid Helium Temperature

2018-11-18T00:34:08+00:00November 17th, 2018|Categories: Publications|Tags: |

An ambipolar superconducting field‐effect transistor is developed using a strongly correlated molecular system laminated on a SiO2/Si substrate. The low‐temperature electronic state is fine tuned in the vicinity of the superconductor‐to‐Mott‐insulator transition, utilizing the negative pressure effect from the substrate, which allows a small dose of hole or electron injection by the SiO2 dielectric to control the superconductivity above 4.2 K. Abstract Superconducting (SC) devices are attracting renewed attention as the demands for quantum‐information processing, meteorology, and sensing become advanced. The SC field‐effect transistor (FET) is one of the elements that can control the SC state, but its variety is still limited. Superconductors at the strong‐coupling limit tend to require a higher carrier density when the critical temperature (T C) becomes higher. Therefore, field‐effect control of superconductivity by a solid gate dielectric has been limited only to low temperatures. However, recent efforts have resulted in achieving n‐type and p‐type SC FETs based on organic superconductors whose T C exceed liquid He temperature (4.2 K). Here, a novel “ambipolar” SC FET operating at normally OFF mode with T C of around 6 K is reported. Although this is the second example of an SC FET with such an operation mode, the operation temperature exceeds that of the first example, or magic‐angle twisted‐bilayer graphene that operates at around 1 K. Because the superconductivity in this SC FET is of unconventional type, the performance of the present device will contribute not only to fabricating SC circuits, but also to elucidating phase transitions

Published in: "Advanced Materials".

Lowering the Schottky Barrier Height by Graphene/Ag Electrodes for High‐Mobility MoS2 Field‐Effect Transistors

2018-11-18T00:34:06+00:00November 17th, 2018|Categories: Publications|Tags: , |

Contact resistance between the channel and electrodes in MoS2 devices is significantly reduced using a low work function metal (Ag) and graphene as an interfacial layer between MoS2 and Ag because the Schottky barrier height is lowered at the contacts. Using graphene/Ag contacts instead of Ti/Au improves the field‐effect mobility, on/off current ratio, and photoresponsivity of the devices. Abstract 2D transition metal dichalcogenides (TMDCs) have emerged as promising candidates for post‐silicon nanoelectronics owing to their unique and outstanding semiconducting properties. However, contact engineering for these materials to create high‐performance devices while adapting for large‐area fabrication is still in its nascent stages. In this study, graphene/Ag contacts are introduced into MoS2 devices, for which a graphene film synthesized by chemical vapor deposition (CVD) is inserted between a CVD‐grown MoS2 film and a Ag electrode as an interfacial layer. The MoS2 field‐effect transistors with graphene/Ag contacts show improved electrical and photoelectrical properties, achieving a field‐effect mobility of 35 cm2 V−1 s−1, an on/off current ratio of 4 × 108, and a photoresponsivity of 2160 A W−1, compared to those of devices with conventional Ti/Au contacts. These improvements are attributed to the low work function of Ag and the tunability of graphene Fermi level; the n‐doping of Ag in graphene decreases its Fermi level, thereby reducing the Schottky barrier height and contact resistance between the MoS2 and electrodes. This demonstration of contact interface engineering with CVD‐grown MoS2 and graphene is a key step toward the practical application of atomically thin TMDC‐based devices

Published in: "Advanced Materials".

Direct CVD Growth of Graphene on Traditional Glass: Methods and Mechanisms

2018-11-18T00:34:01+00:00November 17th, 2018|Categories: Publications|Tags: |

A summary of the chemical vapor deposition (CVD) growth techniques of graphene on traditional glass as well as the growth mechanisms is provided. Direct thermal CVD growth, molten‐bed CVD growth, metal‐catalyst‐assisted growth, and plasma‐enhanced growth are covered. Emphasis is laid on the strategy of growth corresponding to the different natures of glass substrates. Abstract Chemical vapor deposition (CVD) on catalytic metal surfaces is considered to be the most effective way to obtain large‐area, high‐quality graphene films. For practical applications, a transfer process from metal catalysts to target substrates (e.g., poly(ethylene terephthalate) (PET), glass, and SiO2/Si) is unavoidable and severely degrades the quality of graphene. In particular, the direct growth of graphene on glass can avoid the tedious transfer process and endow traditional glass with prominent electrical and thermal conductivities. Such a combination of graphene and glass creates a new type of glass, the so‐called “super graphene glass,” which has attracted great interest from the viewpoints of both fundamental research and daily‐life applications. In the last few years, great progress has been achieved in pursuit of this goal. Here, these growth methods as well as the specific growth mechanisms of graphene on glass surfaces are summarized. The typical techniques developed include direct thermal CVD growth, molten‐bed CVD growth, metal‐catalyst‐assisted growth, and plasma‐enhanced growth. Emphasis is placed on the strategy of growth corresponding to the different natures of glass substrates. A comprehensive understanding of graphene growth on nonmetal glass substrates and the latest status of “super graphene glass” production are provided.

Published in: "Advanced Materials".

Rollable, Stretchable, and Reconfigurable Graphene Hygroelectric Generators

2018-11-18T00:33:59+00:00November 17th, 2018|Categories: Publications|Tags: |

Rollable, stretchable, and 3D space‐deformable graphene‐based hygroelectric generators are developed by a laser processing strategy, which exhibit excellent electricity‐generation ability without any significant performance loss despite being deformed arbitrarily, and are promising as power supply for applications in complicated conditions. Abstract Moisture‐triggered electricity generation has attracted much attention because of the effective utilization of the water‐molecule diffusion process widely existing in atmosphere. However, the monotonous and rigid structures of previously developed generators have heavily restricted their applications in complex and highly deformable working conditions. Herein, by a rational configuration design with a versatile laser processing strategy, graphene‐based hygroelectric generators (GHEGs) of sophisticated architectures with diversified functions such as rollable, stretchable, and even multidimensional transformation are achieved for the first time. More importantly, a wide range of 3D deformable generators that can automatically assemble and transform from planar geometries into spacial architectures are also successfully fabricated, including cubic boxes, pyramids, Miura‐ori, and footballs. These GHEGs demonstrate excellent electricity‐generation performance in curling and elongating states. The generated voltages are easily up to 1.5 V under humidity variation in atmosphere, powering a variety of commercial electronic components. These deformable GHEGs can be applied on complicated surfaces, human bodies, and many more beyond those demonstrated in this work.

Published in: "Advanced Materials".

Deactivating Defects in Graphenes with Al2O3 Nanoclusters to Produce Long‐Life and High‐Rate Sodium‐Ion Batteries

2018-11-18T00:32:36+00:00November 17th, 2018|Categories: Publications|Tags: , |

The defects in graphene are deactivated by the coverage of Al2O3 nanoclusters, which suppress the irreversible decomposition of the sodium conductive salt in sodium‐ion battery electrolytes. An ion‐conducting, thin and homogenous solid electrolyte interphase is formed, resulting in high initial Coulombic efficiency, good rate capability, and cyclic stability for sodium‐ion storage. Abstract Carbon materials are the most promising anodes for sodium‐ion batteries (SIBs), but low initial Coulombic efficiency (ICE) and poor cyclic stability hinder their practical use. It is shown herein, that an effective but simple remedy for these problems can be achieved by deactivating defects in the carbon with Al2O3 nanocluster coverage. A 3D porous graphene monolith (PGM) is used as the model material and Al2O3 nanoclusters around 1 nm are grown on the defects of graphene. It is shown that these Al2O3 nanoclusters suppress the decomposition of conductive sodium salt in the electrolyte, resulting in the formation of a thin and homogenous solid electrolyte interphase (SEI). In addition, Al2O3 nanoclusters appear to reduce the detrimental etching of the SEI by hydrogen fluoride (HF) and improve its stability. Therefore, after the introduction of Al2O3 nanoclusters, the ICE, cyclic stability, and rate capability of the PGM are greatly improved. A higher ICE (70.2%) and capacity retention (82.9% after 500 cycles at 0.5 A g−1) than those of normally reported for large surface area carbons are achieved. This work indicates a new way to deactivate defects and modify the SEI of carbon materials, and hopefully accelerate the commercialization of carbon

Published in: "Advanced Energy Materials".

Carbon Nanodots as Feedstock for a Uniform Hematite‐Graphene Nanocomposite

2018-11-17T22:34:21+00:00November 17th, 2018|Categories: Publications|Tags: |

Finely dispersed hematite nanoparticles in a carbon nanodot‐derived 3D‐graphene matrix show enhanced electrochemical performance in electrochemical double layer capacitors. Abstract High degrees of dispersion are a prerequisite for functional composite materials for applications in electronics such as sensors, charge and data storage, and catalysis. The use of small precursor materials can be a decisive factor in achieving a high degree of dispersion. In this study, carbon nanodots are used to fabricate a homogeneous, finely dispersed Fe2O3‐graphene composite aerogel in a one‐step conversion process from a precursor mixture. The laser‐assisted conversion of small size carbon nanodots enables a uniform distribution of 6.5 nm Fe2O3 nanoparticles during the formation of a highly conductive carbon matrix. Structural and electrochemical characterization shows that the features of both material entities are maintained and successfully integrated. The presence of Fe2O3 nanoparticles has a positive effect on the active surface area of the carbon aerogel and thus on the capacitance of the material. This is demonstrated by testing the performance of the composite in supercapacitors. Faradaic reactions are exploited in an aqueous electrolyte through the high accessible surface of the incorporated small Fe2O3 nanoparticles boosting the specific capacitance of the 3D turbostratic graphene network significantly.

Published in: "Small".

Planar Alignment of Graphene Sheets by a Rotating Magnetic Field for Full Exploitation of Graphene as a 2D Material

2018-11-17T22:32:30+00:00November 17th, 2018|Categories: Publications|Tags: |

Planar alignment of suspended graphene sheets is realized with a near‐perfect order parameter and high optical anisotropy by using a rotating magnetic field produced by a pair of small NdFeB magnets, and can be further patterned and immobilized by photolithography. The arbitrary orientational and spatial control has enabled a wide range of device applications of graphene and related materials. Abstract Planar alignment of disc‐like nanomaterials is required to transfer their superior anisotropic properties from microscopic individual structures to macroscopic collective assemblies. However, such alignment by electrical or magnetic field is challenging due to their additional degrees of orientational freedom compared to that of rod‐like nanostructures. Here, the realization of planar alignment of suspended graphene sheets using a rotating magnetic field produced by a pair of small NdFeB magnets and subsequent demonstration of high optical anisotropy and potential novel device applications is reported. Compared to partially aligned sheets with a static magnetic field, planar aligned graphene suspensions exhibit a near‐perfect order parameter, much higher birefringence and anisotropic absorption/transmission. A unique feature of discotic nanomaterial assemblies is that the observed order parameter and optical property can vary from isotropic to partial and complete alignment depending on the experimental configuration. By immobilizing and patterning aligned graphene in a UV‐curable polymer resin, we further demonstrated an all‐graphene permanent display, which exhibits wide‐angle, high dark‐bright contrast in either transmission or reflection mode without any polarizing optics. The ability to control and pattern graphene orientation in all three dimensions opens up new exploration and broad

Published in: "Advanced Functional Materials".

Graphene‐Based Actuator with Integrated‐Sensing Function

2018-11-17T22:32:10+00:00November 17th, 2018|Categories: Publications|Tags: , |

A graphene‐based actuator with integrated‐sensing function is developed. It realizes real‐time measurements of the shape deformation of the actuator. A smart gripper based on the actuator demonstrates perfect integration of actuating and sensing functions. It can not only grasp and release an object, but also sense every actuation state of the actuator. Abstract Flexible actuators have important applications in artificial muscles, robotics, optical devices, and so on. However, most of the conventional actuators have only actuation function, lacking in real‐time sensing signal feedbacks. Here, to break the limitation and add functionality in conventional actuators, a graphene‐based actuator with integrated‐sensing function is reported, which avoids the dependence on image post‐processing for actuation detection and realizes real‐time measurement of the shape‐deformation amplitudes of the actuator. The actuator is able to show a large bending actuation (curvature of 1.1 cm−1) based on a dual‐mode actuation mechanism when it is driven by near infrared light. Meanwhile, the relative resistance change of the actuator is −17.5%. The sensing function is attributed to piezoresistivity and thermoresistivity of the reduced graphene oxide and paper composite. This actuator can be used as a strain sensor to monitor human motions. A smart gripper based on the actuators demonstrates perfect integration of the actuating and sensing functions, which can not only grasp and release an object, but also sense every actuation state of the actuator. The developed integrated‐sensing actuator is hopeful to open new application fields in soft robotics, artificial muscles, flexible wearable devices, and other integrated‐multifunctional devices.

Published in: "Advanced Functional Materials".

Graphene Sheets: Planar Alignment of Graphene Sheets by a Rotating Magnetic Field for Full Exploitation of Graphene as a 2D Material (Adv. Funct. Mater. 46/2018)

2018-11-17T22:32:06+00:00November 17th, 2018|Categories: Publications|Tags: |

An aligned graphene assembly amplifies the anisotropic properties of individual sheets, creating in a strong dark/bright contrast in the all‐graphene Panda display. Zhiming M. Wang, Jiming Bao, and co‐workers report in article number 1805255, that such alignment can be achieved with a pair of rotating magnets in an arbitrary direction and space, which opens the opportunity of transfering graphene’s superior properties to a macroscopic graphene assembly.

Published in: "Advanced Functional Materials".

Laser‐Induced Graphene Strain Sensors Produced by Ultraviolet Irradiation of Polyimide

2018-11-17T22:32:05+00:00November 17th, 2018|Categories: Publications|Tags: |

Laser‐induced graphene is obtained by irradiation of polyimide by an ultraviolet laser instead of the typical infrared source, with a fourfold decrease in the penetration depth and doubled spatial resolution. Electromechanical strain sensors are patterned in substrates with different thicknesses and their performance is measured. A low‐cost arterial pulse wave monitor is built, exploring the higher sensitivity of thinner substrates. Abstract Laser‐induced graphene (LIG) can be obtained by irradiation of a polymer by a laser source. The present work demonstrates that it is possible to obtain this kind of material using an ultraviolet laser instead of the typical infrared source. Using this approach, a fourfold decrease in the penetration depth (5 µm) is achieved, while the spatial resolution is doubled. Electromechanical strain LIG sensors are patterned in polyimide substrates with different thicknesses and their performance to strain, bending, and force inputs is measured. A low‐cost arterial pulse wave monitor is built, exploring the high force sensitivity of the sensors produced on the thinner substrates.

Published in: "Advanced Functional Materials".

Direct CVD Growth of Graphene on Traditional Glass: Methods and Mechanisms

2018-11-17T02:35:38+00:00November 17th, 2018|Categories: Publications|Tags: |

A summary of the chemical vapor deposition (CVD) growth techniques of graphene on traditional glass as well as the growth mechanisms is provided. Direct thermal CVD growth, molten‐bed CVD growth, metal‐catalyst‐assisted growth, and plasma‐enhanced growth are covered. Emphasis is laid on the strategy of growth corresponding to the different natures of glass substrates. Abstract Chemical vapor deposition (CVD) on catalytic metal surfaces is considered to be the most effective way to obtain large‐area, high‐quality graphene films. For practical applications, a transfer process from metal catalysts to target substrates (e.g., poly(ethylene terephthalate) (PET), glass, and SiO2/Si) is unavoidable and severely degrades the quality of graphene. In particular, the direct growth of graphene on glass can avoid the tedious transfer process and endow traditional glass with prominent electrical and thermal conductivities. Such a combination of graphene and glass creates a new type of glass, the so‐called “super graphene glass,” which has attracted great interest from the viewpoints of both fundamental research and daily‐life applications. In the last few years, great progress has been achieved in pursuit of this goal. Here, these growth methods as well as the specific growth mechanisms of graphene on glass surfaces are summarized. The typical techniques developed include direct thermal CVD growth, molten‐bed CVD growth, metal‐catalyst‐assisted growth, and plasma‐enhanced growth. Emphasis is placed on the strategy of growth corresponding to the different natures of glass substrates. A comprehensive understanding of graphene growth on nonmetal glass substrates and the latest status of “super graphene glass” production are provided.

Published in: "Advanced Materials".

Rollable, Stretchable, and Reconfigurable Graphene Hygroelectric Generators

2018-11-17T02:35:36+00:00November 17th, 2018|Categories: Publications|Tags: |

Rollable, stretchable, and 3D space‐deformable graphene‐based hygroelectric generators are developed by a laser processing strategy, which exhibit excellent electricity‐generation ability without any significant performance loss despite being deformed arbitrarily, and are promising as power supply for applications in complicated conditions. Abstract Moisture‐triggered electricity generation has attracted much attention because of the effective utilization of the water‐molecule diffusion process widely existing in atmosphere. However, the monotonous and rigid structures of previously developed generators have heavily restricted their applications in complex and highly deformable working conditions. Herein, by a rational configuration design with a versatile laser processing strategy, graphene‐based hygroelectric generators (GHEGs) of sophisticated architectures with diversified functions such as rollable, stretchable, and even multidimensional transformation are achieved for the first time. More importantly, a wide range of 3D deformable generators that can automatically assemble and transform from planar geometries into spacial architectures are also successfully fabricated, including cubic boxes, pyramids, Miura‐ori, and footballs. These GHEGs demonstrate excellent electricity‐generation performance in curling and elongating states. The generated voltages are easily up to 1.5 V under humidity variation in atmosphere, powering a variety of commercial electronic components. These deformable GHEGs can be applied on complicated surfaces, human bodies, and many more beyond those demonstrated in this work.

Published in: "Advanced Materials".

Synergistic effect of functionalized graphene oxide and carbon nanotube hybrids on mechanical properties of epoxy composites

2018-11-16T14:32:37+00:00November 16th, 2018|Categories: Publications|Tags: , |

RSC Adv., 2018, 8,38689-38700DOI: 10.1039/C8RA08312F, Paper Open Access &nbsp This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.Zehao Qi, Yefa Tan, Zhongwei Zhang, Li Gao, Cuiping Zhang, Jin TianThe 3D structure hybrids obtained by combining CNT and epoxy functionalized GO

Published in: "RSC Advances".

Growth of two-dimensional materials on hexagonal boron nitride ( h -BN)

2018-11-16T12:35:22+00:00November 16th, 2018|Categories: Publications|Tags: , |

With its atomically smooth surface yet no dangling bond, chemical inertness and high temperature sustainability, the insulating hexagonal boron nitride ( h -BN) can be an ideal substrate for two-dimensional (2D) material growth and device measurement. In this review, research progress on the chemical growth of 2D materials on h -BN has been summarized, such as chemical vapor deposition and molecular beam epitaxy of graphene and various transition metal dichalcogenides. Further, stacking of the as-grown 2D materials relative to h -BN, thermal expansion matching between the deposited materials and h -BN, electrical property of 2D materials on h -BN have been discussed in detail.

Published in: "Nanotechnology".

Ultrafine MnO2 nanowires grown on RGO-coated carbon cloth as a binder-free and flexible supercapacitor electrode with high performance

2018-11-16T12:33:28+00:00November 16th, 2018|Categories: Publications|Tags: , , |

RSC Adv., 2018, 8,38631-38640DOI: 10.1039/C8RA05890C, Paper Open Access &nbsp This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.Zhihui Xu, Shishuai Sun, Wen Cui, Dan Yu, Jiachun DengReduced graphene oxide coated carbon cloth has been used as a substrate for the

Published in: "RSC Advances".

Deactivating Defects in Graphenes with Al2O3 Nanoclusters to Produce Long‐Life and High‐Rate Sodium‐Ion Batteries

2018-11-16T04:36:45+00:00November 16th, 2018|Categories: Publications|Tags: , |

The defects in graphene are deactivated by the coverage of Al2O3 nanoclusters, which suppress the irreversible decomposition of the sodium conductive salt in sodium‐ion battery electrolytes. An ion‐conducting, thin and homogenous solid electrolyte interphase is formed, resulting in high initial Coulombic efficiency, good rate capability, and cyclic stability for sodium‐ion storage. Abstract Carbon materials are the most promising anodes for sodium‐ion batteries (SIBs), but low initial Coulombic efficiency (ICE) and poor cyclic stability hinder their practical use. It is shown herein, that an effective but simple remedy for these problems can be achieved by deactivating defects in the carbon with Al2O3 nanocluster coverage. A 3D porous graphene monolith (PGM) is used as the model material and Al2O3 nanoclusters around 1 nm are grown on the defects of graphene. It is shown that these Al2O3 nanoclusters suppress the decomposition of conductive sodium salt in the electrolyte, resulting in the formation of a thin and homogenous solid electrolyte interphase (SEI). In addition, Al2O3 nanoclusters appear to reduce the detrimental etching of the SEI by hydrogen fluoride (HF) and improve its stability. Therefore, after the introduction of Al2O3 nanoclusters, the ICE, cyclic stability, and rate capability of the PGM are greatly improved. A higher ICE (70.2%) and capacity retention (82.9% after 500 cycles at 0.5 A g−1) than those of normally reported for large surface area carbons are achieved. This work indicates a new way to deactivate defects and modify the SEI of carbon materials, and hopefully accelerate the commercialization of carbon

Published in: "Advanced Energy Materials".

Graphene‐Based Actuator with Integrated‐Sensing Function

2018-11-16T04:34:05+00:00November 16th, 2018|Categories: Publications|Tags: , |

A graphene‐based actuator with integrated‐sensing function is developed. It realizes real‐time measurements of the shape deformation of the actuator. A smart gripper based on the actuator demonstrates perfect integration of actuating and sensing functions. It can not only grasp and release an object, but also sense every actuation state of the actuator. Abstract Flexible actuators have important applications in artificial muscles, robotics, optical devices, and so on. However, most of the conventional actuators have only actuation function, lacking in real‐time sensing signal feedbacks. Here, to break the limitation and add functionality in conventional actuators, a graphene‐based actuator with integrated‐sensing function is reported, which avoids the dependence on image post‐processing for actuation detection and realizes real‐time measurement of the shape‐deformation amplitudes of the actuator. The actuator is able to show a large bending actuation (curvature of 1.1 cm−1) based on a dual‐mode actuation mechanism when it is driven by near infrared light. Meanwhile, the relative resistance change of the actuator is −17.5%. The sensing function is attributed to piezoresistivity and thermoresistivity of the reduced graphene oxide and paper composite. This actuator can be used as a strain sensor to monitor human motions. A smart gripper based on the actuators demonstrates perfect integration of the actuating and sensing functions, which can not only grasp and release an object, but also sense every actuation state of the actuator. The developed integrated‐sensing actuator is hopeful to open new application fields in soft robotics, artificial muscles, flexible wearable devices, and other integrated‐multifunctional devices.

Published in: "Advanced Functional Materials".

Some say, that 2D Research is the best website in the world.