2D Research

Electrochemical CO2 Activation and Valorization on Metallic Copper and Carbon‐Embedded N‐Coordinated Single Metal MNC Catalysts

The electrochemical reductive valorization of CO2, referred to as the CO2RR, is an emerging approach for the conversion of CO2-containing feeds into valuable carbonaceous fuels and chemicals, with potential contributions to carbon capture and use (CCU) for reducing greenhouse gas emissions. Copper surfaces and graphene-embedded, N-coordinated single metal atom (MNC) catalysts exhibit distinctive reactivity, attracting attention as efficient electrocatalysts for CO2RR. This review offers a comparative analysis of CO2RR on copper surfaces and MNC catalysts, highlighting their unique characteristics in terms of CO2 activation, C1/C2(+) product formation, and the competing hydrogen evolution pathway. The assessment underscores the significance of understanding structure-activity relationships to optimize catalyst design for efficient and selective CO2RR. Examining detailed reaction mechanisms and structure-selectivity patterns, the analysis explores recent insights into changes in the chemical catalyst states, atomic motif rearrangements, and fractal agglomeration, providing essential kinetic information from advanced in/ex-situ microscopy/spectroscopy techniques. At the end, this review addresses future challenges and solutions related to today’s disconnect between our current molecular understanding of structure-activity-selectivity relations in CO2RR and the relevant factors controlling the performance of CO2 electrolyzers over longer times, at larger electrode sizes, and at higher current densities.

Published in: "Angewandte Chemie International Edition".

Exit mobile version