HfSe2

/Tag: HfSe2

Localized Surface Plasmon Resonance on Two-Dimensional HfSe2 and ZrSe2. (arXiv:1810.04829v1 [cond-mat.mtrl-sci])

2018-10-12T02:29:39+00:00October 12th, 2018|Categories: Publications|Tags: , , , |

HfSe2 and ZrSe2 are newly discovered two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) with promising properties for future nanoelectronics and optoelectronics. We theoretically revealed the electronic and optical properties of these two emerging 2D semiconductors, and evaluated their performance for the application of localized surface plasmon resonance (LSPR) at extreme conditions: in-plane direction versus out-of-plane direction and monolayer versus multilayer. First, the energy band structure and dielectric constants were calculated for both the monolayer and multilayer structures using Kohn-Sham density functional theory (KS-DFT) with van der Waals (vdW) corrections. A parallel-band effect observed in the monolayer band structure indicates a strong light-matter interaction. Then, based on the calculated dielectric constants, the performance of the LSPR excited by Au sphere nanoparticles (NPs) was quantitatively characterized, including polarizability, scattering and absorption cross-sections, and radiative efficiency using Mie theory. For the multilayer HfSe2 and ZrSe2, the LSPR showed very comparable intensities in both the in-plane and out-of-plane directions, suggesting an isotropy-like light-matter interaction. In a comparison, the LSPR excited on the monolayer HfSe2 and ZrSe2 was clearly observed in the in-plane direction but effectively suppressed in the out-of-plane direction due to the unique anisotropic nature. In addition to this extraordinary anisotropy-to-isotropy transition as the layer number increases, a red-shift of the LSPR wavelength was also found. Our work has predicated the thickness-dependent anisotropic light-matter interaction on the emerging 2D semiconducting HfSe2 and ZrSe2, which holds great potential for broad optoelectronic applications such as sensing and energy conversion.

Published in: "arXiv Material Science".

3d transition metal doping-induced electronic structures and magnetism in 1T-HfSe2 monolayers

2017-11-14T10:29:05+00:00November 14th, 2017|Categories: Publications|Tags: |

RSC Adv., 2017, 7,52747-52754DOI: 10.1039/C7RA11040E, Paper Open Access &nbsp This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.Xu Zhao, Congxia Yang, Tianxing Wang, Xu Ma, Shuyi Wei, Congxin XiaBy performing first-principles calculations, we explore the structural, electronic and magnetic properties

Published in: "RSC Advances".

HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-{kappa} oxides

2017-08-11T18:31:41+00:00August 11th, 2017|Categories: Publications|Tags: , |

The success of silicon as a dominant semiconductor technology has been enabled by its moderate band gap (1.1 eV), permitting low-voltage operation at reduced leakage current, and the existence of SiO2 as a high-quality “native” insulator. In contrast, other mainstream semiconductors lack stable oxides and must rely on deposited insulators,

Published in: "Science Advances".

Two-dimensional semiconductor HfSe2 and MoSe2/HfSe2 van der Waals heterostructures by molecular beam epitaxy

2016-10-15T12:02:41+00:00April 8th, 2015|Categories: Publications|Tags: , , |

By K. E. Aretouli, P. Tsipas, D. Tsoutsou, J. Marquez-Velasco, E. Xenogiannopoulou, S. A. Giamini, E. Vassalou, N. Kelaidis and A. Dimoulas Using molecular beam epitaxy, atomically thin 2D semiconductor HfSe2 and MoSe2/HfSe2 van der Waals heterostructures are grown on AlN(0001)/Si(111) substrates. Details of the electronic band structure of HfSe2 are imaged by in-situ angle resolved photoelectron spectroscopy indicating a high quality epitaxial layer. High-resolution surface tunneling microscopy supported by first principles …read more

Published in: Applied Physics Letters

Some say, that 2D Research is the best website in the world.