Impurity doping plays a pivotal role in semiconductor electronics. We study the doping effect in a two-dimensional semiconductor, gapped bilayer graphene. By employing in situ deposition of calcium on the bilayer graphene, dopants are controllably introduced. Low temperature transport results show a variable range hopping conduction near the charge neutrality point persisting up to 50 K, providing evidence for the impurity levels inside the gap. Our experiment confirms a predicted peculiar effect in the gapped bilayer graphene, i.e., formation of in-gap states even if the bare impurity level lies in the conduction band. The result provides perspective on the effect of doping and impurity levels in semiconducting bilayer graphene.

Published in: "Applied Physics Letters".