In the design of electronic devices based on two-dimensional heterojunctions, the contact between electrodes and different surfaces of two-dimensional heterojunctions may produce different effects. Furthermore, metal–semiconductor contact plays an important role in modern devices. However, due to the Fermi level pinning effect (FLPE), it is difficult to tune the Schottky barrier height between common metals (e.g. Au, Ag, and Cu) and semiconductors. Fortunately, the FLPE becomes weak at the contact between the 2D metal and 2D semiconductor, due to the suppression of metal-induced gap states. Here, we choose monolayer NbS 2 as the electrode to be in contact with the MoSe 2 /WSe 2 bilayer. The interfacial properties as well as the stacking dependence are discussed based on the density functional theory, combined with the nonequilibrium Green’s functions. Two configurations are considered, i.e. the WSe 2 /MoSe 2 /NbS 2 and MoS…

Published in: "Nanotechnology".