2D organolead halide perovskite field effect transistors, which are fabricated based on phase‐pure homologous (n = 1, 2, and 3) Ruddelsden–Popper perovskite (BA)2(MA) n− 1Pb nI3 n +1 single crystals are demonstrated. A strong dependence of carrier transport behavior of the 2D organolead halide hybrid perovskites on the n value is revealed. Abstract This work reveals the intrinsic carrier transport behavior of 2D organolead halide perovskites based on phase‐pure homologous (n = 1, 2, and 3) Ruddelsden–Popper perovskite (RPP) (BA)2(MA) n −1Pb nI3n+1 single crystals. The 2D perovskite field effect transistors with high‐quality exfoliated 2D perovskite bulk crystals are fabricated, and characteristic output and transfer curves are measured from individual single‐crystal flakes with various n values under different temperatures. Unipolar n‐type transport dominated the electrical properties of all these 2D RPP single crystals. The transport behavior of the 2D organolead halide hybrid perovskites exhibits a strong dependence on the n value and the mobility substantially increases as the ratio of the number of inorganic perovskite slabs per organic spacer increases. By extracting the effect of contact resistances, the corrected mobility values for n = 1, 2, and 3 are 2 × 10−3, 8.3 × 10−2, and 1.25 cm2 V−1 s−1 at 77 K, respectively. Furthermore, by combining temperature‐dependent electrical transport and optical measurements, it is found that the origin of the carrier mobility dependence on the phase transition for 2D organolead halide perovskites is very different from that of their 3D counterparts. Our findings offer insight into fundamental carrier transport behavior of 2D organic–inorganic hybrid perovskites based on phase‐pure homologous single crystals.

Published in: "Small".