This Scientific Perspective outlines best practice in the design of plasma catalysis experiments. A water pumping model depicts the limitations of an exergonic reaction that surpasses thermodynamic equilibrium, where the pump represents the plasma. The leak back causes energy dissipation, depending on the water level in the upper reservoir (representing conversion) and the size of the leak (representing plasma activation of the product). Abstract Best practices in testing heterogeneous catalysts are translated to plasma-catalytic experiments. Independent determination of plasma-catalytic and plasma-chemical contributions is essential. Non-porous catalyst particles are preferred because active sites inside sub-micron pores cannot contribute. Temperature variation is needed to determine kinetics, despite the complexity of thermal effects in plasma. Rigorous checks on catalyst deactivation and mass balance are needed. Plasma enhanced reversed reactions should be minimized by keeping conversion low and far from thermodynamic equilibrium, preventing underestimation of the rate of forward reaction. In contrast, plasma-catalytic studies often aim at conversions surpassing thermodynamic equilibrium, not obtaining any information on kinetics. Calculation of catalyst activity per active sites (turn-over-frequency) requires also appropriate characterization to determine the number of active sites. The relationship between kinetics and thermodynamics for plasma-catalysis is discussed using endothermic decomposition of CO2 and exothermic synthesis of ammonia from N2 and H2 as examples. Assuming Langmuir–Hinshelwood and Eley-Rideal mechanisms, the effect of excitation of reactant molecules on activation barriers and surface coverages are discussed, influencing reaction rates. The consequences of reversed reactions are considered. Plasma-catalysis with catalysts applied for thermal catalysis at much higher temperature should be avoided, as adsorbed species are bonded too strongly resulting in low rates.

Published in: "Angewandte Chemie International Edition".