Two-electron oxygen reduction reaction (2e- ORR) is a promising method for the synthesis of hydrogen peroxide (H2O2). However, high energy barriers for the generation of key *OOH intermediates hinder the process of 2e- ORR. Herein, we prepared a copper-supported indium selenide catalyst (Cu/In2Se3) to enhance the selectivity and yield of 2e- ORR by employing an electronic metal–support interactions (EMSIs) strategy. EMSIs-induced charge rearrangement between metallic Cu and In2Se3 is conducive to *OOH intermediate generation, promoting H2O2 production. Theoretical investigations reveal that the inclusion of Cu significantly lowers the energy barrier of the 2e- ORR intermediate and impedes the 4e- ORR pathway, thus favoring the formation of H2O2. The concentration of H2O2 produced by Cu/In2Se3 is ~2 times than In2Se3, and Cu/In2Se3 shows promising applications in antibiotic degradation. This research presents a valuable approach for the future utilization of EMSIs in 2e- ORR.

Published in: "Angewandte Chemie International Edition".